Understanding Induced Fracture Complexity in Different Geological Settings using DFIT Net Fracture Pressure

Dan Potocki, EnCana Corporation
October 14, 2015

SPE162814

2015 Gussow Conference: Fine-Grained Rocks: Resources to Reserves, October 13-15 | Banff Centre | Banff, Canada
DFITs reveal **Stimulation Complexity**

Dan Potocki, Gussow Conference 2015
...and how stress impacts complexity
Outline

1. Conclusions
2. What is a DFIT
3. How NFP Reveals Complexity
4. Defining Fabric
5. Quantifying Complexity
6. Stacked Cretaceous, Montney, Horn River
Controls on Induced Fracture Complexity

1st Order TECTONIC SETTING

- **Gulf Coast**
 - Passive Margin
 - Haynesville, Bossier

- **Foreland**
 - Cretaceous SS
 - Montney
 - Horn River

- **Strike-Slip / Thrust**

Increasingly Complex Burial and Tectonic histories

Increasing tectonic fractures, tectonic stress, decoupling pressure-stress
Controls on Induced Fracture Complexity

1st Order

TECTONIC SETTING

- Gulf Coast Passive Margin
- Foreland Cretaceous SS
- Strike-Slip / Thrust

2nd Order

- Rock Properties
- Wellbore Orientation
- Net Horizontal Stress

Increasingly Complex Burial and Tectonic histories
Increasing tectonic fractures, tectonic stress, decoupling pressure-stress

Dan Potocki, Gussow Conference 2015
Controls on Induced Fracture Complexity

1st Order
TECTONIC SETTING

Gulf Coast
Passive Margin
Haynesville, Bossier

Foreland
Cretaceous SS
Montney
Horn River

Strike-Slip / Thrust

2nd Order
Wellbore Orientation

Increasingly Complex Burial and Tectonic histories
Increasing tectonic fractures, tectonic stress, decoupling pressure-stress

Dan Potocki, Gussow Conference 2015
Controls on Induced Fracture Complexity

Increasingly Complex Burial and Tectonic histories
Increasing tectonic fractures, tectonic stress, **decoupling pressure-stress**

1st Order

TECTONIC SETTING
- Gulf Coast
 - Passive Margin
 - Haynesville, Bossier
- Foreland
 - Cretaceous SS
 - Montney
 - Horn River
- Strike-Slip / Thrust

2nd Order

Net Horizontal Stress
- Passive Margin
- Foreland
- Strike-Slip / Thrust

Dan Potocki, Gussow Conference 2015
DFIT
Diagnostic Fracture Injection Test

pressure vs. time

ISIP (FEP, FG)
closure
Pore Pressure

Dan Potocki, Gussow Conference 2015
DFIT
Diagnostic Fracture Injection Test

Net Fracture Pressure (NFP) “complexity”
Net Horizontal Stress (NHS)

ISIP

Pore Pressure

Shmin
wellbore

dan Potocki, Gussow Conference 2015
...why do you like DFITs?
Elastic Properties Of small INTACT Samples

Poorly Predict The Behavior Of FRACTURED Rock

Dan Potocki, Gussow Conference 2015
DFITs sample “Complexity” at more representative scale, σ ε conditions than core/logs

- **Core**
 - Observe fractures (infer failure)
 - Static failure of intact matrix

- **Well logs**
 - Dynamic agitation of limited volume (not at failure)

- **DFITs**
 - In-situ failure of rock “mass”

Dan Potocki, Gussow Conference 2015
How NFP Reveals Complexity

Net Fracture Pressure = ISIP – Closure

Dan Potocki, Gussow Conference 2015
How NFP Reveals Complexity

NFP = ISIP – Closure

Dan Potocki, Gussow Conference 2015
How NFP Reveals Complexity

NFP = ISIP – Closure

Dan Potocki, Gussow Conference 2015
How NFP Reveals Complexity

NFP = ISIP – Closure

Dan Potocki, Gussow Conference 2015
How NFP Reveals Complexity

NFP = ISIP – Closure

Dan Potocki, Gussow Conference 2015
How NFP Reveals Complexity

NFP = ISIP – Closure

ISIP > ~24 kPa/m

Dan Potocki, Gussow Conference 2015
Key Cause of Increased NFP

Interactions between Hydraulic Fractures and Rock “Fabric”
Rock Fabric
intensity and orientation of fractures/POWs

Non-tectonic

- Brittle, stiff layer
- Ductile, compliant layer
- Intensity related to geomechanical properties
- Regionally pervasive
- \(\uparrow \text{NFP} \) infer \(\uparrow \text{NF} \) infer stiff/brittle

Tectonic

- Intensity related to folding/faulting
- Regionally inconsistent
- \(\uparrow \text{NFP} \neq \text{stiffness/brittleness} \)

Dan Potocki, Gussow Conference 2015
Quantifying Complexity and its Controls

Net Fracture Pressure

Complexity

Net Horz Stress

Confinement & Coupling

NHS vs. NFP

Confined Complexity

Dan Potocki, Gussow Conference 2015
Quantifying Complexity

Cretaceous Sandstones

Non Tectonic Fabric

Geomechanical Properties

NFP Complexity

Dan Potocki, Gussow Conference 2015
Quantifying Complexity

Confidential Strike Slip basin

Tectonic Fabric

Geomechanical Properties

NFP Complexity

DOESN’T MATTER

Dan Potocki, Gussow Conference 2015
Distinguishing Good from Bad Complexity

Favorable complexity
- Simple Network of low stress vertical, well connected induced and non-tectonic natural fractures

Problematic complexity
- Complex Network of vertical to horizontal highly stressed tectonic, natural and induced fractures

<table>
<thead>
<tr>
<th>ISIP</th>
<th>Favorable (ISIP > overburden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFP</td>
<td></td>
</tr>
<tr>
<td>gradient</td>
<td></td>
</tr>
<tr>
<td>examples</td>
<td>Falher</td>
</tr>
</tbody>
</table>

Closure gradient in kPa/m:
- Falher: low closure
- Gething: moderate closure
- Montney: high closure
- Cadomin, Cadotte, Cardium: intermediate closure

<table>
<thead>
<tr>
<th>ISIP gradient</th>
<th>Favorable (ISIP > overburden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>examples</td>
<td></td>
</tr>
<tr>
<td>Horn River</td>
<td></td>
</tr>
</tbody>
</table>

Confidential Strike slip/thrust basins

Closure gradient kPa/m

NFP gradient kPa/m

Dan Potocki, Gussow Conference 2015
Quantifying Complexity and its Controls

Net Horz Stress
Confinement & Coupling

Increasing NFP, Increasing complexity
Uncoupled - tectonic stress
Uncoupled + tectonic stress
Increasing NHS
Confinement & Coupling

Dan Potocki, Gussow Conference 2015
Net Horizontal Stress: Confinement

Increasing NHS

Dan Potocki, Gussow Conference 2015
Net Horizontal Stress: is closure coupled with pore pressure?

Coupled

Closure = \[\nu^* (S_v - P_r) \] + Pressure \[\frac{1}{1 - \nu} \]

Uncoupled

Closure = \[\nu^* (S_v - P_r) \] + Pressure + \(\sigma \)

Closure = \[\nu^* (S_v - P_r) \] + Pressure - \(\sigma \)

Dan Potocki, Gussow Conference 2015
Passive Margin, Hayneville, Bossier

Mostly Coupled
Foreland, Horn River

Coupled to Uncoupled (extensional to compressional)
Foreland, Montney

Mostly Uncoupled (compressional)

Closure gradient kPa/m vs. Pore pressure gradient kPa/m
Highly Uncoupled (compressional)

![Graph showing pore pressure gradient vs. closure gradient]
Highly Uncoupled
(highly compressional)
Strike Slip / Thrust Cooper Basin, Australia

Highly Uncoupled
(highly compressional)

Optimizing stimulation practices in Cooper basin,
Nelson. 2007
Petroleum Geoscience, vol.13, pp3-16
Case Histories

Gulf Coast Passive Margin
Haynesville Bossier

Foreland
Cretaceous SS
Montney
Horn River

Strike-Slip/Thrust

Increasingly Complex Burial and Tectonic histories
Increasing tectonic fractures, tectonic stress, decoupling pressure-\(\sigma\)

Dan Potocki, Gussow Conference 2015
“Plainsville”
Gulf Coast Passive Margin

- High stress
- Lowest complexity
- Simple, soft, weak, = “Biwing-like”
- Highest OP
- Lowest NHS
- Coupled
- Complexity Increases as Pore Pressure decreases
- Local extension
- refracing

Dan Potocki, Gussow Conference 2015
Implications of Pressure-Stress Coupling

Good Predictability
 • frac models
 • stress logs

Relatively Easy Completions
 • repeatable
Case Histories

Gulf Coast Passive Margin
Haynesville Bossier

Foreland
Cretaceous SS
Montney
Horn River

Strike-Slip/Thrust

Increasingly Complex Burial and Tectonic histories
Increasing tectonic fractures, tectonic stress, decoupling pressure-σ
• **Highest Stress**

• **Highest complexity**

• **NFP ≠ natural fractures ≠ brittleness**

Dan Potocki, Gussow Conference 2015
Strike-slip/Thrust Setting

- Highest Stress
- Highest complexity
- NFP ≠ natural fractures ≠ brittleness

- Moderate OP
- Highest NHS
- Uncoupled compressional

- Complexity Decreases as NHS increases
Implications of Tectonic Uncoupling

Poor Predictability
- need to calibrate stress logs
- difficult modeling

Problematic Completions
- PO, SO
- Repeatability
- erratic SRV
Case Histories

Foreland

Gulf Coast Passive Margin

Tectonic fabric
Remnant Tectonic stress
Decoupled

Dan Potocki, Gussow Conference 2015
• Variable stress & complexity

• Where Unstructured
NFP ≈ non-tectonic fractures
Frac Stimulation Playbook
based on DFIT derived non-tectonic Fracture Intensity
Foreland Basin

- Vague coupling obscured by tectonic decoupling
- Regionally uncoupled resembles SS/thrust
- Remnant coupling like Passive Margin?
Foreland Basin: *location...location...location...*

“...it is critical to recognize when a region resides or resided in a tectonically active setting”

Dan Potocki, Gussow Conference 2015
Foreland: Montney Bissette, Dawson Creek

NFP Complexity

- Low to Moderate complexity
- Biwings?
- Greater complexity in higher stressed regions
- Tectonic fabric

NHS Confinement & Coupling

- Moderate to high NHS
- Mostly Uncoupled remnant tectonic compression
- Local SS

Confined Complexity

- NHS vs. NFP
 - Low Confinement & Coupling
 - Moderate to high NHS
 - Mostly Uncoupled remnant tectonic compression

AOF gas rate vs. Net Horizontal Stress gradient

Dan Potocki, Gussow Conference 2015
Foreland: Montney with Farrell Creek

- Low to problematic complexity
- No/few Biwings?
- Even Greater problematic complexity in higher stressed regions
- Tectonic fabric !!

- Moderate to v high NHS
- Problematic complexity
- Local Highly Uncoupled remnant tectonic compression
- bedding plane slippage
Foreland: Horn River

- Low to **problematic** at all stress levels
- Low NHS
- Uncoupled remnant tectonic compression and extension
- Local SS
- Problematic complexity PO, SO
- Hz wells

Dan Potocki, Gussow Conference 2015
Horn River

<table>
<thead>
<tr>
<th>Location</th>
<th>Days on Production</th>
<th>Avg Gas/Stage (MMcf/d)</th>
<th>EUR (Pad Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-K South</td>
<td>70</td>
<td>0.56</td>
<td>0.56 Bcf/Stage EUR (Pad Average)</td>
</tr>
<tr>
<td>70-K North</td>
<td>70</td>
<td>0.28</td>
<td>0.28 Bcf/Stage EUR (Pad Average)</td>
</tr>
</tbody>
</table>

Dan Potocki, Gussow Conference 2015
Summary

Induced Fracture Complexity...is Complex!

1st Order
TECTONIC SETTING
Gulf Coast Passive Margin
Foreland
Strike-Slip / Thrust

2nd Order
Rock Properties
Net Horizontal Stress
Wellbore Orientation

Dan Potocki, Gussow Conference 2015