Shell Amines for CO$_2$ Capture

Canadian Society of Petroleum Geologists
Carbon Capture Utilization and Storage Workshop
September 29th, 2016

Ian Craig
Shell Cansolv
Definitions & Cautionary Note

Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Shales: Our use of the term ‘shales’ refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations” respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production costs; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2015 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 29 September, 2016. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.

Copyright by Cansolv Technologies Inc. September 2016 2
Amine CO$_2$ Removal System

An absorbent is a substance which has the ability of extracting some substances from a liquid or gaseous medium with which it is in contact.

Stripping is a mass transfer process in which an undesired component (e.g. solute, gaseous pollutant, in this case CO$_2$) in a liquid stream transfers to a vapour stream under favourable conditions.
Shell Technologies for CO\textsubscript{2} Capture

Oil and Gas
- Wellhead
- Upstream Processing
- CO\textsubscript{2}/H\textsubscript{2}S separation

Post Combustion
- Coal
- Gas
- Biomass
- Power Plant (SCPC, CCGT)
- CO\textsubscript{2} separation
- Syngas

Pre Combustion
- Coal
- Oil
- Gas
- Gasification & Shift
- CO\textsubscript{2} separation
- CO\textsubscript{2} compression

Oxyfuel
- Coal
- Oil
- Gas
- Biomass
- Power Plant (Boiler + Steam Turbine)
- CO\textsubscript{2} separation
- Proprietary Technology

Industrial processes
- Coal
- Gas
- Biomass
- Process
- CO\textsubscript{2} separation
- Raw Material
- Gas, Ammonia, Steel

- CO\textsubscript{2} Capture / Production
 - Reliable
 - Economic
 - Flexible

Copyright by Cansolv Technologies Inc.
Shell ADIP* & ADIP-X* - Optimized for High Pressure Applications

- Mature, Widely Deployed Technology

- More than 500 Shell operating facilities and licensees have applied the ADIP technology since the 1950s.

- ADIP-X technology introduced in 2000 for cost-effective CO₂, H₂S and COS removal. Our current references remove CO₂ to under 50 ppmv from approximately 20 vol% CO₂ in the feed.

Comparison to other High Pressure Solvents

✓ Faster CO2 and COS removal through enhanced reaction kinetics

✓ Higher loading capacity, reducing the solvent circulation rate and allowing smaller equipment

✓ Reduced steam requirements because of its lower solvent circulation rate and heat of reaction
Cansolv CO₂ Capture Overview

- Regenerable amine-based solvent for selective post combustion CO₂ capture
- Systems can be guaranteed for bulk CO₂ removal up to 99%.
- Highly adaptable to a wide variety of applications
Global Shell involvement in CCS projects

- Industrial scale projects in operation
- Planned industrial scale project - FEED completed
- Involvement through Shell Cansolv technology – no Shell equity

- Quest
- TCM
- Peterhead (cancelled)
- Gorgon
- Boundary Dam
Shell Cansolv at Saskpower’s CCUS Project, Boundary Dam 3
1 mm tonnes/year CO\textsubscript{2} capture for enhanced oil recovery

- First commercial-scale post-combustion carbon capture system at a coal-fired power plant
- Demonstrates the viability of large-scale post-combustion CO\textsubscript{2} capture
- Uses Shell Cansolv CO\textsubscript{2} technology. Captures up to 90% CO\textsubscript{2}, high or low SO\textsubscript{2} content
- Enables EOR with CO\textsubscript{2} from 150 MW power plant fluegas
- Meets stringent CO\textsubscript{2} regulations
- CO\textsubscript{2} permanently stored
Only Post-Combustion CO₂ Capture Technology with De-Risked Scale-up and Proven Constructability

- Proven and repeated design across industries with guaranteed performance
- Also capable of Low-pressure, Pre combustion Capture
- HSSE focused – With partners, 4 million on-site man hours, 0 Lost Time Injuries during Boundary Dam 3

Source: Shell Cansolv Project Data
Copyright by Cansolv Technologies Inc.

Gas Flow (Nm³/h)
CO₂ Capture for Natural Gas Power Plants

- Further CO₂ reduction will be required to meet COP21 Targets
- Natural gas conversion project must plan for future regulation
- As oil price increases, demand for CO₂ used for EOR also expected to increase