Quest CCS
Storage and Monitoring – The First Year

CSPG CCUS Workshop Calgary
29 September, 2016

Anne Halladay
Quest Subsurface

Copyright of Shell Canada
Cautionary Statement

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. In this presentation, joint ventures and associates may also be referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropiation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2013 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 29 September 2016. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.
Quest Project at a glance

AOSP JV

Copyright of Shell Canada
Quest Project
Site Selection and Storage
Quest Site Selection

Selection Criteria
- Capacity
- Injectivity
- Containment
- MMV
- Pore Space Access
- Cost

Legend:
- Project Implore July 10, 2010
- Project Notes
- Formation
- Thickening Direction
- MCS Shale
- Lower Lotsberg
- Upper Lotsberg

Area of Interest

Project Description:
Project QUEST CCSD - Area of Interest

Copyright of Shell Canada
The Storage Complex

- Deep (~2km) saline aquifer in the BCS
- Below potable water zones, zones with hydrocarbon potential
- Multiple thick, continuous seals (>150m within the complex)
- High quality (~17% porosity) sandstone reservoir
- Excellent permeability (~1000mD)
Quest Project
Operational MMV

Measuring, Monitoring, Verification for Containment and Conformance
Operational MMV Plan

First of a kind facility for both Shell and the province of Alberta

- First of a kind – conservative approach
- Comprehensive: from atmosphere to geosphere
 - Risk-based
 - Site-specific
 - Adaptive
- Independently reviewed
- Combination of new and traditional technologies
- Baseline data collected before start-up
Operational MMV Plan

Baseline

Atmosphere
- LightSource Laser CO2 Monitoring
- Eddy Covariance Flux Monitoring

Biosphere
- CO2 Natural Tracer Monitoring
- CO2 Flux and Soil Gas
- Remote Sensing (Brine & NDVI)

Hydrospere
- Shell Groundwater Wells: Continuous EC, pH
- Discrete Chemical and Isotopic Analysis on water and gas
- Private Landowner Groundwater Wells (discrete chemistry and isotopes on water and gas)

Geosphere
- Time-Lapse Walkaway VSP Surveys
- Time-Lapse 3D Surface Seismic

Deep Monitoring Wells
- Downhole Pressure & Temperature (DHPT) above Storage Complex (CKLK Fm)
- Downhole Microseismic Monitoring

Injection Wells
- Injection Rate Metering, RST Logging, Temperature logging
- DHPT, Wellhead PT, Distributed Temperature and Acoustic Sensing, Annulus Pressure Monitoring, Wellhead CO2 Sensor, Mechanical Well Integrity Testing, Operational Integrity Assurance

Closure

Copyright of Shell Canada
Operational MMV Plan: Containment KPI for 2015

<table>
<thead>
<tr>
<th>Domain</th>
<th>Technology</th>
<th>Trigger Event</th>
<th>2015</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>LightSource</td>
<td>Sustained locatable anomaly above background levels</td>
<td>Green</td>
<td>Possible impact of inclement weather on system response</td>
</tr>
<tr>
<td>Biosphere</td>
<td>Soil Gas</td>
<td>Outside established baseline range</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface CO2 Flux</td>
<td>Outside established baseline range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroosphere</td>
<td>Tracer</td>
<td>Outside established baseline range</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WPH</td>
<td>Sustained decrease in baseline pH values</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEC</td>
<td>Sustained increase in baseline WEC values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geochemical Analyses</td>
<td>Outside established baseline range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geosphere</td>
<td>DHPT CKLK</td>
<td>Pressure increase 200 Kpa above background levels</td>
<td>Red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DHMS</td>
<td>Sustained clustering of events with a spatial pattern indicative of fracturing upwards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTS</td>
<td>Sustained temperature anomaly outside casing</td>
<td>Yellow</td>
<td>Move to automatic data retrieval</td>
</tr>
<tr>
<td></td>
<td>VSP2D</td>
<td>ID coherent and continuous amplitude anomaly above the storage complex</td>
<td>Yellow</td>
<td>1st Monitor Q1/2016</td>
</tr>
<tr>
<td></td>
<td>SEIS3D</td>
<td>ID coherent and continuous amplitude anomaly above the storage complex</td>
<td>Yellow</td>
<td>N/A, VSP2D deployed.</td>
</tr>
<tr>
<td></td>
<td>InSAR</td>
<td>Unexpected localized surface heave</td>
<td>Yellow</td>
<td>Report in 2017, after 1 year of data</td>
</tr>
</tbody>
</table>
Atmosphere - Lightsource

- Measures average CO₂ over the beam length
- LightSource system installed and functional at all injection sites
- Release testing demonstrated detection and location of CO₂ emissions near IW pads
- Confirmed as technology for atmospheric monitoring at Quest
Hydrosphere - Groundwater Monitoring

- 2 years of baseline data from wells across the sequestration area
- Landowner wells sampled regularly
- Carbon isotopes used as natural tracers
- GW wells on injection sites continuously recording – a CO₂ leak should cause an abrupt drop in pH, distinct from natural sensor drift
- No indication of any issues – new sensors installed
Geosphere - Remote Sensing using InSAR

Ongoing InSAR work:

- Updated processing of natural reflectors
- Measurement point density increased
- Average displacement rate detection sensitivity of 0.87 mm/year
- Currently evaluating the data

Surface Deformation Model Update

- High case shows detectable deformation about one year post injection
- Factor of 10 uncertainty
Geosphere - Microseismic

- Microseismic array installed in DMW 8-19 recording baseline MS activity in November 2014 – re-installed in April 2015.

- One small ($M < -1.5$) locatable event was detected in July, 2016.
Geosphere - Time Lapse VSPs

Preliminary Results

Key objectives

- Measure the shape/size of CO2 plume & compare with modelled prediction
- Ensure CO2 remains in BCS
Geosphere - IW 8-19 Pulsed Neutron Log

• Pulsed Neutron log was run in May 2015 prior to injection (Black line), and a repeat was run after 6 months of CO₂ injection. (Red line)

• Initial Observations
 • Change in the pulsed neutron response over the perforated (Red rectangle).
 • No change in log response above or below the perforated interval or through the LMS member.

• Conclusions:
 • CO₂ is contained within the perforated interval and the BCS reservoir. (Red rectangle).
 • The injected CO₂ is mainly within the high permeability streaks (Green Arrows).
Quest Project
Reservoir and Well Performance
Pressure build-up in the BCS is forecast to be less than 2 MPa (deltaP) by the end of the project life.

- Injecting into 2 wells
- Injection pressures are lower than expected
Key Lessons Learned

- Regulatory/stakeholder engagement critical to build/maintain support
- Risk-based MMV design early in project, good baseline data is really important
- Modular construction approach worked really well – delivered the project on time and under budget

Learn a lot from doing:

- Quest area is tectonically very quiet
- Walk away VSPs able to image CO$_2$ in the BCS, DAS worked really well
- InSAR … to be evaluated
- BCS is an excellent reservoir for CO$_2$ injection
Acknowledgements

• Government of Alberta, Department of Energy (DOE)
• Government of Canada, Natural Resources Canada (NRCan)
• Shell staff (Calgary, Houston, EU, Scotford and in the field)
• Partners: Chevron Canada Ltd & Marathon Oil Canada
Questions and Answers

Quest CCS Knowledge Sharing Reports

http://www.energy.alberta.ca/CCS/3848.asp