Current Status of Direct Utilization of Geothermal Energy in Canada

Jasmin Raymond - jasmin.raymond@inrs.ca
Michel Malo
Denis Tanguay
Stephen Grasby

Ground Source Heat Pumps Hot Springs

Conclusions
- Installed capacity 1,458 MWe
- Energy used 11,386 TJ/yr
- 0.4% of energy consumed in the residential and commercial sector
- 12th World rank for direct use
- Publications 975 / 7th World rank

Data available in Raymond et al. 2015
World Geothermal Congress
Current Status of Direct Utilization of Geothermal Energy in Canada

Jasmin Raymond - jasmin.raymond@inrs.ca
Michel Malo
Denis Tanguay
Stephen Grasby

Ground Source Heat Pumps
Hot Springs
Ground Source Heat Pumps

Hot Springs
- 9,984,670 km²
- Population 35.8 M (Stat Can, 2015)
- GDP 1.99 G$ (Stat Can, 2015)
- Energy 11,407 PJ/yr Total / 26 % in the residential and commercial sectors (Nat Ener Board, 2016)
Ground Source Heat Pumps

2006 to 2008: growth rate 40%/yr
2009: peak installation 15,913 units
 - Increase in oil and gas prices
 - Financial incentives from governments

2010 to 2012: downturn
 - Financial crisis
 - Decrease in oil and gas prices
 - End of many government incentives

2013: Back to growth?

Geothermal heat pump units installed in Canada from 1990 to 2013 (Tanguay, 2014)
Ground Source Heat Pumps

Geothermal system type
- Surface water 6.4%
- Ground water 13.0%
- Vertical closed loop 24.2%
- Horizontal closed loop 56.4%

Energy replaced
- Wood 1.4%
- Wood pellets 0.6%
- Electricity 39.1%
- Fuel oil and wood 2.0%
- Fuel oil and electricity 0.6%
- Natural gas 7.2%
- Propane 10.1%

Distribution of geothermal heat pump systems certified by the Canadian GeoExchange Coalition (CGC)

Ground Source Heat Pumps
Installed capacity and energy used...
Ground Source Heat Pumps

Installed capacity and energy used

<table>
<thead>
<tr>
<th>Year</th>
<th>Units installed</th>
<th>Replacements (%)</th>
<th>New installations</th>
<th>Cumulative new installations</th>
<th>Total capacity (MW)</th>
<th>Energy use*** (TJ yr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>450 (90%)</td>
<td>2</td>
<td>441</td>
<td>6</td>
<td>46</td>
<td>3.5 COP 3,000 hr/yr</td>
</tr>
<tr>
<td>1991</td>
<td>491</td>
<td>2</td>
<td>931</td>
<td>19 (14 kW)</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>2,303</td>
<td>2</td>
<td>3,675</td>
<td>51</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>3,675</td>
<td>3</td>
<td>7,350</td>
<td>103</td>
<td>951</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>1,504</td>
<td>3</td>
<td>8,854</td>
<td>124</td>
<td>1,089</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>1,310</td>
<td>3</td>
<td>10,164</td>
<td>142</td>
<td>1,212</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>1,146</td>
<td>3</td>
<td>11,310</td>
<td>158</td>
<td>1,304</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>801</td>
<td>3</td>
<td>12,111</td>
<td>170</td>
<td>1,342</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>424</td>
<td>4</td>
<td>12,535</td>
<td>175</td>
<td>1,449</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>967</td>
<td>4</td>
<td>13,502</td>
<td>189</td>
<td>1,564</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1,050</td>
<td>4</td>
<td>14,552</td>
<td>204</td>
<td>1,764</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1,906</td>
<td>5</td>
<td>16,458</td>
<td>230</td>
<td>1,949</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>2,718</td>
<td>5</td>
<td>19,176</td>
<td>268</td>
<td>2,055</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>2,269</td>
<td>5</td>
<td>21,445</td>
<td>300</td>
<td>2,300</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>2,296</td>
<td>5</td>
<td>23,741</td>
<td>332</td>
<td>2,546</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>3,276</td>
<td>5</td>
<td>27,017</td>
<td>378</td>
<td>2,899</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>5,395</td>
<td>5</td>
<td>32,412</td>
<td>454</td>
<td>3,481</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>8,809</td>
<td>5</td>
<td>41,221</td>
<td>577</td>
<td>4,424</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>13,704</td>
<td>8</td>
<td>54,925</td>
<td>769</td>
<td>5,897</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>14,038</td>
<td>12</td>
<td>68,963</td>
<td>965</td>
<td>7,400</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>10,488</td>
<td>7</td>
<td>79,451</td>
<td>1,112</td>
<td>8,527</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>8,825</td>
<td>7</td>
<td>88,276</td>
<td>1,236</td>
<td>9,478</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>7,410</td>
<td>7</td>
<td>95,686</td>
<td>1,340</td>
<td>10,275</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>7,837</td>
<td>5</td>
<td>103,523</td>
<td>1,449</td>
<td>11,111</td>
<td></td>
</tr>
</tbody>
</table>

*Assuming 50% of systems installed 17 years before were replaced in 2006 and after, ** Average system capacity was estimated to 14 kW, *** Average coefficient of performance and heating hours at full load were assumed to 3.5 and 3,000 hr yr⁻¹**
Hot Springs

1880's: Commercial exploitation of the hot springs began after First Nations
1841: George Simpson (Hudson's Bay Company) visited Radium Hot Spring

Construction of bathhouses and hotels
1886 - Banff
1913 - Miette
1914 - Radium

Location of the commercially exploited hot springs (red) and thermal water (blue) in Canada

©A Durno (Miette)
Hot Springs

Commerci ally exploited

<table>
<thead>
<tr>
<th>Name</th>
<th>Province</th>
<th>Flow rate (L/s)</th>
<th>Springs temperature (°C)</th>
<th>Pool outlet temperature (°C)</th>
<th>Capacity (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banff Upper</td>
<td>AB</td>
<td>14.9</td>
<td>47</td>
<td>38</td>
<td>563</td>
</tr>
<tr>
<td>Miette</td>
<td>AB</td>
<td>15.3</td>
<td>54</td>
<td>37</td>
<td>1092</td>
</tr>
<tr>
<td>Ainsworth</td>
<td>BC</td>
<td>6.9</td>
<td>47</td>
<td>32</td>
<td>435</td>
</tr>
<tr>
<td>Fairmont</td>
<td>BC</td>
<td>20.9</td>
<td>46</td>
<td>44</td>
<td>176</td>
</tr>
<tr>
<td>Halycon</td>
<td>BC</td>
<td>3.5</td>
<td>54</td>
<td>32</td>
<td>323</td>
</tr>
<tr>
<td>Harrison</td>
<td>BC</td>
<td>26.1</td>
<td>40</td>
<td>28</td>
<td>1,315</td>
</tr>
<tr>
<td>Liard</td>
<td>BC</td>
<td>30.0</td>
<td>52</td>
<td>30*</td>
<td>2,772</td>
</tr>
<tr>
<td>Nakusp</td>
<td>BC</td>
<td>1.2</td>
<td>57</td>
<td>30</td>
<td>136</td>
</tr>
<tr>
<td>Mount Layton (Lakelse)</td>
<td>BC</td>
<td>9.9</td>
<td>41</td>
<td>30</td>
<td>457</td>
</tr>
<tr>
<td>Radium</td>
<td>BC</td>
<td>28</td>
<td>40</td>
<td>32</td>
<td>941</td>
</tr>
<tr>
<td>Skookumchuck (St. Agnes)</td>
<td>BC</td>
<td>3.2</td>
<td>35</td>
<td>30</td>
<td>67</td>
</tr>
<tr>
<td>Takhini</td>
<td>YT</td>
<td>5.7</td>
<td>40</td>
<td>35</td>
<td>120</td>
</tr>
<tr>
<td>Temple Gardens Mineral Spa</td>
<td>SK</td>
<td>5.7</td>
<td>46</td>
<td>30</td>
<td>383</td>
</tr>
</tbody>
</table>

| Abbreviations: AB, Alberta; BC, British Columbia; SK, Saskatchewan; YT, Yukon. *Assumed temperature as water flows in swamps. |

\[
\text{Capacity (kW)} = \times \left(\text{Flow rate (L/s)} \times \left(\text{Springs temperature (°C)} - \text{Pool outlet temperature (°C)} \right) \right)
\]

Total capacity (kW):

\[
8,780
\]

Energy use (TJ yr⁻¹):

\[
277
\]

All year 24/7
Research Contributions

Scopus search with “geothermal” in title abstract or keywords from 1990 to 2015: 23,143 scientific publications

Author affiliations
1- United States (6,033)
2 - China (2,469)
3 - Germany (1,586)
7 - Canada (975)

2004 to 2014:
Average growth of 12 %/yr

Publications with “geothermal” in title, abstract or keywords having one or more Canadian affiliations
Research Contributions - High Impact
Ground source heat pumps - Hot Springs

Lamarche, Beauchamp, 2007; 145 citations
• A new contribution to the finite line-source model for geothermal boreholes

Lamarche, Kajl, Beauchamp, 2007; 127 citations
• A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems

Grasby, Hutcheon, Krouse 2000; 44 citations
• The influence of water-rock interaction on the chemistry of thermal springs in western Canada

Research Contributions - INRS
Ground source heat pumps
Research Contributions - INRS

Ground source heat pumps

Objective: better understand heat transfer mechanisms in complex geological environments to improve system efficiency

Activities orientation:

- Characterization of favorable geological environments to host geothermal systems
 - Flooded mines - open loop
 - Urban districts - closed loop

- Improvement of design and operation methods

- Development of new technology

Goal: decrease installation cost
Characterization of Favorable Geological Environments
The St. Lawrence Lowlands Basin

- 20 000 km² in Québec
- Undeformed Cambro-Ordovician platform
Thermostratigraphic Assessment

- 45 outcrop samples
- Needle probe method

- >4 W/mK
 Potsdam Group and Theresa Formation

- 3 - 4 W/mK
 Beauharnois Formation, Queenston and Lorraine groups

- <3 W/mK
 Trenton, Black River, Chazy, Utica and Sainte-Rosalie groups
GeoExchange Potential and Borehole Length

- Sizing calculations for a residential system based on each sample
 - < 130 m: Potsdam Group and Theresa Formation
 - 130 to 160 m: Beauharnois Formation, Queenston and Lorraine groups
 - > 160 m: Trenton, Black River, Chazy, Utica and Sainte-Rosalie groups
Urban District Scale Assessment to the North of Montreal

- 4 **thermal response tests** with a heating cable
- 10 **laboratory measurements** with transient plane source
- 27 **synthetic data points** from regional **thermostratigraphy**
- Work performed for **Marmott Énergies**
Stochastic Thermal Conductivity Distribution

Sequential Gaussian simulations to interpolate values

1) Method

1) Pick non-simulated cell at random (i=6)
2) Compute kriging estimate and variance
3) Draw a random value \(x_k \) from the kriging distribution
4) Treat simulated \(x_k \) as additional control point
5) Go back to 1) until entire grid is simulated

2) Single realization

3) Mean of ten realizations

4) Variance of ten realizations
Conclusions
- Installed capacity 1,458 MWt
- Energy used 11,388 TJ/yr
- 0.4% of energy consumed in the residential and commercial sector
- 12th World rank for direct use
- Publications 975 / 7th World rank
Current Status of Direct Utilization of Geothermal Energy in Canada

Jasmin Raymond - jasmin.raymond@inrs.ca
Michel Malo
Denis Tanguay
Stephen Grasby

Conclusions
- Installed capacity 1.458 MWt
- Energy used 11,388 TJ/yr
- 0.5% of energy consumed in the residential and commercial sector
- 12th World rank for direct use
- Publications 975 / 7th World rank

Data available in Raymond et al. 2015
World Geothermal Congress